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5.1.1. FIRST CAR WITH INTERNAL COMBUSTION ENGINE
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Francois Isaac de Rivaz
(* December 19, 1752 in
Paris, T July 30, 1828 in Sion,
CH) was a French politician,
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In 1813, de Rivaz attempted a large handcart powered by his engine. He was able to
achieve 25 firings of H,/air mixture in a row that had to be triggered individually by
hand. The car, which was loaded with four people or a load of 700kg, was able to drive
a full 26m at a speed of 3 km/h.

This trip is considered the first trip as a motor vehicle with an explosion or gas engine
in the history of technology.
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5.2. STIRLING ENGINE

Stirling engine 1843

Robert Stirling D.D. March 1843 to the Dundee Foundry

25. October 1790 in Cloag, Methvin, Scotland; . .

t 6. Juni 1878 in Galston, Ayrshire, Scotland), Company, metal CaSt”?g in Scotland.

was a British priest and engineer 34 kW at 28rounds/min,
Cylinder diameter: 0.4 m, hight: 1.22 m,
Efficiency of 18%
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5.2.1. PRICIPLE OF THE STIRLING ENGINE

5. Piston Engines

AQ,
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5.2.2. SINGLE CYLINDER STIRLING ENGINE

5. Piston Engines

: hot cap

: cold wall

water connection
: thermal insulation
: displacer piston

: working piston

: gear
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5.2.3. STIRLING ENGINE MODEL
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5.2.4. MOVING STIRLING ENGINE MODEL

5. Piston Engines

Ref.: http://giphy.com/gifs/
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5.2.5. REAL STIRLING ENGINE
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5.2.6. pV DIAGRAM OF THE STIRLING CYCLE




5.2.7. STIRLING CYCLE

1 — 2 isochor (V = const)

AW, =0 and AQq =n-cy (Tp—T¢)

2 — 3 isotherm (T = T,, = const, AU = 0)

AW, = p-dV = n‘R-Ty'In(V,/V4) and AQ, = -AW,

3 — 4 isochor (V = const)

AW3 =0 and AQ3; = n-cy-(T—T})

4 — 1 isotherm (T = T, = const, AU = 0)

AW, = p-dV = n‘R- T In(V4/V5) and AQ4 = -AW,

Total work AW and heat from the hot reservoir (T;)

AW = AW, + AW, = n'R-T'In(Vo/V4) + n'R- T In(V4/V5) = n'R-(Tp=T¢) In(Vo/V4)

AQ = AQ1 + AQz = n'C\/'(Th— TC) + n'R'Th'ln(Vz/V»])



5.2.8. EFFICIENCY OF THE STIRLING CYCLE

Efficiency is

AW
AQ
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AQ

n-R-(T,,-T()-ln(—"
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5.2.9. EXAMPLES OF STIRLING CYCLE EFFICIENCY

. . i AW 1
Efficiencyis 1 = — {TIK], v, Vo/Vi}
AQ ol )
035 _.+
V, T,
R-In -
1 Tl
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i
£
005 {373, 1.5, 1.1}
400 600 800 remperstue [;c:oo 1200 1400
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5.3. OTTO ENGINE (EXPLOSION ENGINE)

Carl Friedrich Benz

(* 25. November 1844 in Mihlburg
— als Karl Friedrich Michael Vaillant;
’ t 4. April 1929 in Ladenburg

Nicolaus August OTTO
(1832 - 1891)

January 29, 1886 - Karl Benz received a
German patent for a "Vehicle Propelled by a
Gas Engine" (first functional unit of an

engine with a chassis) called "Patent-
Motorwagen”.
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5.3.1. 4-STROKE OTTO ENGINE (EXPLOSION ENGINE)

Spark plug

(a)
(b)
(c)
(d)
(e)

Intake Compression Spark Power Exhaust
(a) (b) (c) (d) (e)

The first down cycle of the piston is to suck into the cylinder a mixture of fuel and air. An inlet valve in the
cylinder head opens to let in the fuel air mixture as the piston moves down within the cylinder.

The inlet valve in the cylinder head closes and as the piston moves up the cylinder, the air/fuel mixture is
compressed.

The third cycle is the combustion cycle. When the piston reaches the top of the cylinder, the spark plug
ignites the compressed air/fuel mixture.

The mixture then explodes and the pressure pushing the piston down, which in turn pushes the crankshaft
around.

The final and fourth cycle of the Otto cycle is the exhaust cycle. After the combustion cycle, it then
commences its second upstroke to push out the burnt fuel/air mixture through the exhaust valve.

ChE 414 Thermodynamics of energy conversion
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5. Piston Engines

5.3.2. MOVING OTTO ENGINE MODEL
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5. Piston Engines

5.3.3. 4-CYLINDER OTTO ENGINE
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5.3.4. pV- DIAGRAM OF THE OTTO CYCLE

@

1 — 2 Explosion (V = const)
AW, =0 and AQs =n-cy:(To— Ty)
2 — 3 adiabatic ( AQ = 0)

AQ, = 0and AW, = n-cy:(Tz—T))
3 — 4 isochor (V = const)

AW3 =0 and AQsz = n-cy:(T4—Ts)
4 — 0 isobar (p = const)
AQs=0and AWs5 = p- (V5—V,)
0 — 4 isobar (p = const)

AQG =0 and AWG = P (V4 - V5)



5.3.5. EFFICIENCY OTTO ENGINE

4 — 1 adiabatic (AQ = 0)

AQ, =0and AW, = n-cy(T;—Ty)

Total work AW and heat from the hot reservoir (T})
AW = AW, + AW, = n-cy(Ta= T,) + n-cy(T— Ta)

AQ = AQl = n'CV'(Tz— Tl)

Efficiency
AW AW,+AW, n-C,(T;-T,)+n-C,(T,-T,)
"TTa0 T a0, 7-Cor (T,-T)
AW (T,-T3)
YTAE @)
n=1-— ! Kk = %
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5.3.6. SELF IGNITION

Self ignition temperature of petrol is 257°C.

Max. compression (adiabatic)

C

b (3 )(5“)



5.3.7. COMBUSTION POWER

Combustion of Octane (Petrol)

CgH,q + 12.50, + 50N, — 8CO, + 9H,0 + 50N,

The volume of the cylinder determines
the amount of molecules available for
the combustion n = p-V/(R:T).

63.5 molecules produce

AHg =-5116.5kJ (H,0),.;  and  AHg=-5512.5kJ (H,0);;

ChE 414 Thermodynamics of energy conversion



5. Piston Engines

heptane.
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5.3.8. PROPERTIES GASOLINE, PETROL

Gases

Naphthas

~» Kerosenes

—» Gas oils

(a) Petroleum distillation tower

Lubricants

Fuel oil

Asphalt

(b) Petroleum fractions

HC  CH,
AN
H;

H,C

?Hs

cHy

“'c\c/c\c"’

Number of
carbons

1-4

10-16

16-60

>60

>70

>80
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Ha

Boiling point
range

0-30°C

30-180°C

180-260°C

260-350°C

350-575°C

>490°C
>580°C

~CHs
| HC  CHy
c \/
- c
HC CH
/
I 1 me” o
HC =C
~Ne? Nen,

Main components of gasoline: isooctane, butane, 3-ethyltoluene, and the octane enhancer MTBE.

The bulk of a typical gasoline consists of hydrocarbons with between 4 and 12 carbon atoms per molecule
(commonly referred to as C,-C,,).[2] It is a mixture of paraffins (alkanes), cycloalkanes (naphthenes), and
olefins (alkenes), where the usage of the terms paraffin and olefin is particular to the oil industry.

Gasoline contains about 42.4 MJ/kg (120 MJ/US gal, 33.3 kWh/US gal, 11.8 kWh/kg, 120,000 BTU/US gal)
Octane rating is measured relative to a mixture of 2,2,4-trimethylpentane (an isomer of octane) and n-

Uses

Bottled and natural gas

Gasoline

Kerosene for home
heaters, jet fuel

Diesel fuel, feedstock
for cracking

Motor oil, feedstock
for cracking

Candles, fuel oil for ships
and power stations

Roofing tar, road tar

19.3. 2024 23
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5.3.9. 2-STROKE OTTO ENGINE
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5.3.10. MOVING 2-STROKE MARINE ENGINE

MARINE TWO STROKE
PETROL ENGINE

FUEL TANK
SPARK PLUG

WATER JACKET

TELLTALE
EXHAUST PORT

5. Piston Engines
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5. Piston Engines
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George Bailey
BRAYTON

(*3.10. 1830 in
Crompton, USA; t
17.12. 1892 in
Kingsbury, England
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5.4.1. PRINCIPLE OF THE BRAYTON READY MOTOR
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5.4.2. BRAYTON READY MOTOR CYCLE

1 — 2 Adiabatic filling: Q;, =0, Wy, = n-¢c+(T,—Ty)

2 — 3 Isobar expansion (combustion): Q,; =Q,,, W,5=0
3 — 4 Adiabatic expansion Q3, =0, W5, = n-c\(T,—T;)

4 — 1 Isobar exhaust: Q41 = Q y, W4 =0

Efficiency:
Tl Pl (v=1)/~
T Py

Compressor [

>

Y= Cp/Cv

ChE 414 Thermodynamics of energy conversion



5.4.3. pV AND TS DIAGRAM OF THE BRAYTON READY MOTOR

T A 3
gin
4
: \
X
Lo qout

P-v Diagram v T-s Diagram
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5.5. WANKEL ENGINE

7 (o

5. Piston Engines

/&

Felix Heinrich Wankel
(* 13. August 1902 in
Lahr; T 9. Oktober 1988
in Heidelberg)

DKM 54 (DrehKolbenMotor 54) 1957
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5. Piston Engines

intake

ignition

Prof. Dr. Andreas ZUTTEL, e: andreas.zuettel@epfl.ch, m: +41 79 484 2553

5.5.1. CYCLE OF THE WANKEL ENGINE

exhaust
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5.5.2. EFFICIENCY OF THE WANKEL ENGINE

Efficiency is determined (in analogy to the Otto engine) by the compression ratio:

1 C
() v
1
- 40 _ 40
= £
= =
3 30 30
" F"’ ‘\\ ! ff’q
LR y "
s n = 1500 min~1 n = 3500min-1
] - - ungedrosselt
g ZZP optimal \
E 10

10— o——o Wasserstoff
\ o——a Benzin \
0 1 1 1 0 1 1 1

0 2 4 6 0 2 4 6
Luftverhdltnis A A

Audi NSU Wankelmotor EA 871
Stand 1977
Verdichtungsverhaltnis 9,2 : 1
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5.5.3. MOVING WANKEL ENGINE

INTAKE

5. Piston Engines

Ref.: http://giphy.com/gifs/car-works-educational-lheewDzC0On3G0
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5.6. DIESEL ENGINE (COMBUSTION ENGINE)

Rudolf Christian Karl
Diesel 1858 - 1913

Diesel engine 1892

ChE 414 Thermodynamics of energy conversion



5. Piston Engines

5.6.1. DIESEL COMBUSTION

High-pressure
fuel injection

Conventional
fuel injection
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5. Piston Engines

5.6.2. DIESEL ENGINE (COMBUSTION ENGINE) r4* V: speciic vokume

R

P,
P,
0
Fuel Fuel Fuel Fuel
injector inj r injector injector
IR0 Exhaust injecto Exhaust J Exhaust ) Exhaust
Intake Intake Intake Intake
valve el valve

Four stroke :
cycle === Intake Compression Power Exhaust
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)| 5.6.3. DIESEL DISTRIBUTION

=
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-

Ll

c Spray Formation and Fuel-Ambient
S Atomization | Vaporization | Mixing
v - primary | secondary

o Fuel Injection breakup | breakup /

s cavitation | exit flow /‘
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5. Piston Engines
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pressurized ak outlet

5.6.4. DIESEL ENGINE WITH TURBOLOAD

rocker cover._rocker arm valve spring intake vaive
adjuster—g@ fi

push rod
engne exhaust
outlet

turbocharger
exhaust inlet

starter solenoid
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5.6.5. MARINE DIESEL ENGINE

RETURN LINE

r -‘_

FUEL
TANK

o

SUPPLY LINE

MARINE DIESEL
VALVES ENGINE

ROCKERS
CAM SHAFT V-
TIMING GEAR |
INJECTOR he
FUEL PUMP

LIFT PUMP

FUEL FILTERS
SIGHT GAUGE
HEAT EXCHANGER
THERMOSTAT
PISTON

CON ROD
CRANKSHAFT
FW. PUMP

RW. PUMP

Q SEACOCK

R OIL COOLER

8 OIL PUMP

T BYPASS VALVE

U OIL FILTER

V OIL GAUGE

X AIR BLOWER

O

5. Piston Engines

COMPRESS EXHAUST

VOZEMrX«=exOdOmMmMOO®>»

INDUCTION
THE WORK CYCLE
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5.6.6. pV-DIAGRAM OF DIESEL CYCLE

1 — 2 Injection isobar (p = const)

AQ, AW,
t AW, = py:(V2- V1) and AQq = p2r(V2- V)
P +n-cy (To—Ty)
2 — 3 adiabatic ( AQ = 0)
AQZ =0 and AWZ = n'Cv'(T3— T2)
3 — 4 isochor (V = const)
AW3 =0and AQ3 = n'Cv'(T4— T3)
4 — 0 isobar (p = const)
AQ5 =0 and AW; = p- (V5 — V4)
o i | 0 —4isobar (p = const)
Vs V, V; V3, Vy V

AQ@ =0 and AW@ = p- (V4 - V5)



5.6.7. EFFICIENCY OF THE DIESEL CYCLE

4 — 1 adiabatic (AQ = 0)

AQu =0and AW, = n-cy'(T1—=T,)

Total work AW and heat from the hot reservoir (T;)

AW = AW, + AW, + AW, = por (V- Vq) + n-cy(Ts—To) + n-cy(T1—Ty)

AQ = AQq = par(V2- V) + n-cy (To—Ty)

Efficiency:
A‘/v AW1+AW2+AWI4 I),?.(‘/?,—‘/I)+,I.('V.(7}-T.?) +’I‘('1."(T1-T4)
7 = — —
] AQ AQ, P, (V,-V,)+n-c(T,-T))
Gy
» ¥ x &
()
AW Cy ( V, ) V
] — — -
I AQ ( V, V,

P _-_1
V,
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4, 5.6.8. PARTICLE EMISSIONS AND FILTER
c
o0 Number creeeo. Mass
- Distribution Distribution
- g Nanoparticles Fine Particles
g = Dp<50 nm Dp<2.5 pm
4(7; .‘E . <?O ¢=C)
o § % Ultrafine Particles PM10
: - Dp<100 nm
T8 S =0
L) L\) PN
3 g l' ‘\
= Nuclei JAccumulation
£ Mode J Mode % Coarse
S ‘ S . Maode
- ’ . -
- s . ==
0.001 0.010 0.100 1.000 10.000
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PM10

5. Piston Engines

Upper respiratory tract

5.6.9. PARTICLES FROM DIESEL COMBUSTION

PM2.5 PM1 PMO.1

\\

Coarse particules Fine particules Very fine particules Ultrafine particules
Lower respiratory tract Alveolus Blood/Whole body

Fig.3.
Deposition probability of
inhaled particles in the
respiratory tract according
to particle size

PMO.1 PM1

Normal adult mouth breather 1.2m’/h

10+

0.8~

0.6-4

Deposition

0.4-

0.2-

o .
0.001 0005 0.01 0.1 1
Diameter (um)
Source: W.G. Kreyling. adapted from International Commission on Radiological Protection.

PM10
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5. Piston Engines

T[°C] = (T[°F] — 32°F)*5/9
Properties of Fuels (a)
No.2 Compressed
Gasoline | Diesel Fuel | Methanol | Ethanol MTBE Propane | NaturalGas | Hydrogen | Biodiesel |
CH4 (83-99%), C12-C22
Chemical Formula C410C12] C81toC25| CH30H| C2H50H| (CH3)3COCH3| C3H8 C2H6 (1-13%) H2 FAME
Molecular Weight 100-105 ~200 32.04 46.07 88.15| 44.1 16.04 2.02 ~292(Q)
Composition, Weight %
>Carbon 85-88(b 879) 375 52.2 68.1 82 75 0 77(9))
>Hydrogen 12-15(b 3@4 126 13.1 13.7 18 25 100 12(g9)
>Oxygen 0 499 347 182 - - 0 11(9))
Specific gravity, 60° F/60° F__ | 0.72-0.78(b) 0.85( 0.796(h) | 0.794(h) 0.744(k) |  0.508(m) 0424 0.07(0) 0.88(9))
Density, Ib/gal @ 60° F 6.0-6.5(b) 7.079@) 6.63(b) | 6.61(b) 6.19(k) 422 1.07(n) - 7.32
Boiling temperature, *F 80-437(b) | 356-644(g)|  149(h) 172(h) 131(h) -44(m)| -263.2 to -126.4(m) -423(m)| 599-662(Q))
vapor pressure (100° F),
8-15(c) <0.2 4.6(i) 2.3%1) 7.8(1) 208 2400 - <0.04(r)
Hea' value (2
>Lower ) (d) 116,090 128,450] 57.250] 76.330 93,540 84,250 - - 119,550
>Lower (Btu/b) (d) 18,676 18,394 8637] 11585 15,091 19,900 20,263 52,217 16,131
>Higher (Btu/gal) (d) 124.340] 137,380 65,200] 84,530 101,130] 91420 - - 127.960
[>Higher (Btu/ib) (d) 20,004 19673 9.837] 12830 16,316 21,594 22 449 59 806 17,266
|Octane no.(1)
>Research octane no. 88-98(c - - - - 112 - 130+ -
>Molor octane no. 80-88(c - - - - 97 - -
Cetane no.(1) - 40-55(g) 0-54(1) - - - - 48-65(g)|
Freezing point, °F -40(e)| -40-30(4) -1435 -173.2 -164(h) | -305.8(m) -296 -435(p)| 26-66(g)7)|
Viscosity, mm* /s
>@104 °F - 13419@)| - - - - - - 406.0(9)
> F 0506(N] 2850(N] 0.74(N 1.50(f) 0.47(n) - - - B
F — 0.8-1.0(N| 9.0-24.00] 1.345(n| 3.435(1) [0 - - -
Flash point, closed cup, °F 45() | 140-176(9)]__ 52() 55(1) -14(c) | -156(m) -300 - 212-338(9)
Autoignition temperature, *F 495(b) ~600 |  867(v)|  793() 815|  842(m) 900-1170(m) 932(m) -
Water solubility, @ 70° F -
>Fuel in water, volume % Negligible | Negligible 100(h) 100(h) 4.8(N) - - - -
>Water in fuel, volume % Negligible | Negligible 100(h) 100(h) 1.5(N) - - - -
Flammability limits, volume% N N
>Lower 1.4(b) 10| 7.30 4.3() 16(ce 2.2 53 4.1(0
>Higher 7.6(b) 6.0]  36.03) 19.0(1) 84(ce 95 15 74(0
l.m heat of vaporization
F ~900(b) ~710 | 3.340(b)| 2.378(b)] 863(5 775 - - -
>8ub @60°F ~150 ~100 506(b 396(b) 138(5 193.1 219 192.1(p) -
Specific heat, Btu/ib °F 0.48(e) 043 0.60() 0.57() 0.50())! - - -
Stoichiometric air/fuel, 147 14.7 6.45 9.00| 1.7 15.7 17.2 34.3(0) 13.8(9))
Volume % fuel in vaporized
stoichiometric mixture 2.0 (b) - 12.3(b) 6.5(b) 2.7(1) - - - -
http://algaeenergy.weebly.com
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5.7.3. EXHAUST GAS COMPOSITION VS. OXYGEN
| | TWC Windows
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- X
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% 40+ HE Fuel consumption g
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0 - | | | | | 0
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Fuel consumption, a.u.

Fig. 1 shows the conversion curves for each pollutant as a function of the air/fuel ratio, for a three-way-
catalyst (TWC). Around the stoichiometric point (air/fuel A/F=14.63), all the three pollutants (HC, CO and
NO) are highly converted (>95 %), i.e. they are almost totally removed. However, when the environment is
abundant in oxygen as in diesel engines (A/F>20), although this environment enhances the oxidation of
HC and CO, the reduction of NO becomes practically inefficient, then this pollutant cannot be

appropriately removed with TWC technology.

Ref.: R. M Heck, R. J Farrauto, S Gulati, Catalytic Air Pollution Control: Commercial Technology. New Yersey: John Wiley &

Sons; 2009

F Basile, G Fomasari, A Grimandi, M Livi, A Vaccari, Effect of Mg, Ca and Ba on the Pt-catalyst for NOx storage reduction.

Applied Catalysis B: Environmental 20066958
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5.7.4. EXHAUST GAS: NO, Storage and reduction, NSR

selective catalytic £, H0
NO O, NO, reduction (SCR) "%’; Hs oo N,
® % P . With ammonia R / 9 NH,
\J /-\ generated by 7\ m’ O NoO
143 .
s hydrolysis of urea R
Cordiente . Cordierite
- on lorries. . .
Lean period Rich period
<+ :H: :%: >§< ;§< >
| s
.9 NO'Inlcr Cnn(‘cntratlon ...............................................
£ .-
E=
o]
= NO,
8 saturation
X NO, level
O maximum
= NO, adsorption reduction level ¢
capacity CeaeeOcion: |

The typical NO, storage and reduction behaviour can be observed in the bottom graph of Fig. 2. At the
beginning of the lean period nearly all the NO, (NO+NO,) entering the trap is adsorbed, afterwards the NO,
outlet concentration progressively increases due to the successive saturation of the available trapping
sites. When saturation is completed, NO, outlet concentration equals the NO, inlet concentration. During
the subsequent rich period, when H, is injected, the adsorbed NO, species on the catalyst surface react
with hydrogen to form N,O, NH; or N,, resulting in the regeneration of the trap which is again ready for the

following lean period.

Time
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EXERCISES

1) What gas should be used and how should the Stirling engine be constructed in order
to optimize the efficiency ?

2) What reduces the efficiency of a real Otto engine as compared to the calculated
efficiency?

3) The efficiency of the Diesel engine depends on the ratio V,/V, and the ratio V,/V;.
Describe how the efficiency is maximized.

4) Calculate the temperature increase in the adiabatic compression of a diesel engine
(1:22) and compare it with the autoignition temperature of 600 F = 315° C.

5) Calculate the maximum adiabatic temperature of the combustion of diesel (C;,H5¢).3



